Correctness of Loops: Syntax
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Correctness of Loops: Example

void testLI() { /# Assume: integer attribute 1 #*/

assert i1 == 1; /» Precondition =/
assert (1 <= 1) && (i <= 6); /% Is LI established? x/
while (i <= 5) {

i=1+1;

assert (1 <= 1) && (i <= 6); /* Is LI maintained? =*/
}

assert i1 == 6; /* Postcondition #*/
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Contracts of Loops: Visualization
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Correctness of Loops: Dijkstras Shortest-Path Algorithm

Recall: A loop invariant (LI) is a Boolean condition. . )

o Ll is establisehd before the 1st iteration. 4 K »
o Llis preserved at the end of each subsequent iteration.

The (iterative) Dijkstra’s algorithm has L/:

For every vertext u that has already been
removed from the priority queue Q (i.e., u is considered visited),
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D(u) equals the true shortest-path distance from source s to u.
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Dijkstras Shortest Path Algorithm: Negative Weights

The (iterative) Dijkstra’s algorithm has LI:

For every vertext u that has already been
removed from the priority queue Q (i.e., u is considered visited),
D(u) equals the frue shortest-path distance from source s to vu.




