Correctness of Loops: Syntax

INZaN 7V R Ra
i‘% m _void myAlgorithm() { |

assert Q; /* Precondition */

‘ Violation
init L Sinit | Slnlt
while { Q| assert I; /x Is LI established? */
4 while(B) { Y. Loop
od K Sbody e

. ._?_Q_ _______ - Precondition

X v Invariant
} . i assert I; /x Is LI preserved? x/ § ‘e Violation
- 1 1 .
{R} J_ .: | assert R; /+ Postcondition %/ 1 I '
W{M (ﬂ.ﬂ. |} 1 1 1 1 1 1 1 1 1 1 1 1 1 v- = B A= R
:' e memmctene > Postcondition
. et Violation
L B . =
A’f"z 0(T,
THUE opt < R derd Moleam Lo

R :
A\Q" 1B ewtt tvoleant sbodyl'

t ﬁBAR
X$ lo/ﬂ 6 B w twl, exetl Swla a%. o--
Qs somnns B 1 Jabe 5 2t Hiom fheLzT

O©CoOoONOOOTA~,WN =

Correctness of Loops: Example

void testLI() { /# Assume: integer attribute 1 #*/

assert i1 == 1; /» Precondition =/
assert (1 <= 1) && (i <= 6); /% Is LI established? x/
while (i <= 5) {

i=1+1;

assert (1 <= 1) && (i <= 6); /* Is LI maintained? =*/
}

assert i1 == 6; /* Postcondition #*/

Precondition
Violation

Loop
Invariant
Violation

Postcondition
Violation

Contracts of Loops: Visualization

Exit condition

Previous state

Initialization Invariant Postcondition

/ -
r Body
[> ., Body

Correctness of Loops: Dijkstras Shortest-Path Algorithm

Recall: A loop invariant (LI) is a Boolean condition. .)

o Ll is establisehd before the 1st iteration. 4 K »
o Llis preserved at the end of each subsequent iteration.

The (iterative) Dijkstra’s algorithm has L/:

For every vertext u that has already been
removed from the priority queue Q (i.e., u is considered visited),

Loop
Invariant
Violation

D(u) equals the true shortest-path distance from source s to u.

Postcondition
Violation

Dijkstras Shortest Path Algorithm: Negative Weights

The (iterative) Dijkstra’s algorithm has LI:

For every vertext u that has already been
removed from the priority queue Q (i.e., u is considered visited),
D(u) equals the frue shortest-path distance from source s to vu.

